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1 General

1.1 What is encryption?

Encryption is the transformation of data into a form unreadable by anyone

without a secret decryption key. Its purpose is to ensure privacy by keeping

the content of the information hidden from anyone for whom it is not intended,

even those with access to the (encrypted) data.

In a multi-user setting, encryption allows secure communication over an inse-

cure channel. The general scenario is as follows: Alice wishes to send a message

to Bob so that no one else besides Bob can read it. Alice encrypts the message,

which is called the plaintext, with an encryption key; the encrypted message is

called the ciphertext. Bob decrypts the ciphertext with the decryption key and

reads the message. An attacker, Charlie, may either try to obtain the secret key

or to recover the plaintext without using the secret key. In a secure cryptosys-

tem, the plaintext cannot be recovered from the ciphertext except by using the

decryption key.

Encryption can also be used in a single-user setting, say by encrypting �les

on a hard disk to prevent an intruder from reading them. This is one example

of bulk encryption, which refers to encryption of large amounts of data.

Cryptography has been around for millennia; see [33] for a good history of

cryptography; see [61] and [10] for an introduction to modern cryptography.

1.2 What is authentication?

Authentication in a digital setting is a process whereby the receiver of a digital

message can be con�dent of the identity of the sender and/or the integrity

of the message. Authentication protocols can be based on either conventional

secret-key cryptosystems like DES (MIT's Kerberos system is an example) or on

public-key systems like RSA; authentication in public-key systems uses digital

signatures.

In this document, authentication will generally refer to the use of digital sig-

natures, which play a function for digital documents similar to that played by

handwritten signatures for printed documents: the signature is an unforgeable

message asserting that a named person (or other entity) either wrote or other-

wise agreed to the document to which the signature is attached. The recipient,

as well as a third party, can verify both that the document did indeed originate

from the person whose signature is attached and that the document has not

been altered since it was signed. A secure authentication system thus consists

of two parts: a method of signing a document such that forgery is infeasible,

and a method of verifying that a signature was actually generated by whomever

it represents. Furthermore, secure digital signatures cannot be repudiated; i.e.,

the signer of a document cannot later disown it by claiming it was forged.
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Unlike encryption, digital signatures are a recent development, the need for

which has arisen with the proliferation of digital communications.

1.3 What is public-key cryptography?

Traditional cryptography is based on the sender and receiver of a message know-

ing and using the same secret key; the sender uses the secret key to encrypt the

message, and the receiver uses the same secret key to decrypt the message. This

method is known as secret-key cryptography, or symmetric cryptography. The

main problem is getting the sender and receiver to agree on the secret key with-

out anyone else �nding out. If they are in separate physical locations, they must

trust a courier, or a phone system, or some other transmission system to not

disclose the secret key they are communicating. Anyone who overhears or in-

tercepts the key in transit can later read all messages encrypted using that key.

The generation, transmission and storage of keys is called key management; all

cryptosystems must deal with key management issues. Secret-key cryptography

often has di�culty providing secure key management.

Public-key cryptography was invented in 1976 by Whit�eld Di�e and Martin

Hellman [24] in order to solve the key management problem. In the new system,

every person gets a pair of keys, one public, one private. Everyone publishes his

public key and keeps his private key secret. The need for sender and receiver to

share secret information is eliminated: all communications involve only public

keys, and no private key is ever transmitted or shared. No longer is it necessary

to trust the security of some communications channel. Anyone can send a

con�dential message using public information only; it can only be decrypted

with a secret key which is in the sole possession of the intended recipient.

Furthermore, it was realized that public-key cryptography, unlike secret-key

cryptography, can be used for authentication (digital signatures) as well as for

privacy (encryption).

Here's how it works for encryption: If Alice wishes to send a message to

Bob, she looks up Bob's public key in a directory, uses it to encrypt to message

and sends it o�. Bob then uses his private key to decrypt the message and read

it. No one listening in can decrypt the message. Anyone can send an encrypted

message to Bob but only Bob can read it. Clearly, one requirement is that no

one can �gure out a private key from the corresponding public key.

Here's how it works for authentication: Alice, to sign a message, does a

computation involving both her secret key and the message itself; the output is

the signature and is attached to the message which is then sent. Bob, to ver-

ify the signature, does some computation involving the message, the purported

signature, and Alice's public key. If the results properly hold in a simple math-

ematical relation, the signature is veri�ed as genuine; otherwise, the signature

may be fraudulent or the message altered, and they are discarded.

A good history of public key cryptography, by one of its inventors, is given

by Di�e [22].
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1.4 What are the advantages and disadvantages of public-key cryp-

tography over secret-key cryptography?

The primary advantage of public-key cryptography is increased security: the

secret keys do not need to be transmitted or communicated to anyone; no one

else needs to be trusted. In a secret-key system, there is always a chance that

an enemy could discover the secret key while it is being transmitted.

Another major advantage of public-key systems is that they can provide a

method for digital signatures. Authentication via secret-key systems requires

the sharing of some secret and sometimes requires trust of a third party as

well; a sender can repudiate a previously signed message by claiming that the

shared secret was somehow compromised. Public-key authentication provides

non-repudiation and digitally signed messages can be proved authentic to a

third party, such as a judge. This allows public-key authentication to be used

for legally binding documents; secret-key authentication cannot be so used.

The primary disadvantage of public-key cryptography is speed: there are

popular secret-key encryption methods which are signi�cantly faster than any

currently available public-key method. The issue of speed in the case of RSA

public-key encryption is addressed in Question 2.4.

For encryption, the best solution is to combine public- and secret-key sys-

tems to get both the security advantages of public-key systems and the speed

advantages of secret-key systems. The public-key system can be used only to

encrypt a secret key which is then used to encrypt the bulk of a �le or message.

This is explained in more detail in Question 2.13 in the case of RSA. Public-key

cryptography is not meant to replace secret-key cryptography, but rather to

supplement it to make it more secure. The �rst use of public-key techniques

was for secure key exchange in an otherwise secret-key system [24]; this is still

one of its primary functions.

Secret-key cryptography remains extremely important and is the subject of

much ongoing study and research. Some secret-key systems are discussed in

Questions 5.1 and 5.5.

1.5 Is cryptography patentable in the U.S.?

Cryptographic systems are patentable. Many secret-key cryptosystems have

been patented, including DES; also, NIST has applied for a patent for its re-

cently proposed digital signature standard. Some patent applications for cryp-

tosystems have been blocked by intervention by the National Security Agency

(NSA) or other intelligence or defense agencies, under the authority of the In-

vention Secrecy Act of 1940 and the National Security Act of 1947; see Landau

[41] for some recent cases related to cryptography.

The basic ideas of public-key cryptography are contained in US Patent

4,200,770, by M.Hellman, W.Di�e, and R. Merkle, issued 4/29/80 and in US

Patent 4,218,582, by M.Hellman and R.Merkle, issued 8/19/80. The exclusive
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licensing rights to both patents are held by Public Key Partners (PKP), of Sun-

nyvale, California, which also holds the RSA patent (see Question 2.22). Usually

all of these patents are licensed together. The authors of patent 4,218,582 claim

that it applies to all uses of public-key cryptography. It has been patented

throughout the world.

All legal challenges to public-key patents have been settled before judgment.

In a recent case, for example, PKP brought suit against the TRW Corporation

which was using public-key cryptography (the ElGamal system) without a li-

cense; TRW claimed it did not need to license. In June 1992 a settlement was

reached in which TRW agreed to license to the patents.

1.6 Is cryptography exportable from the U.S.?

All cryptographic products need export licenses from the State Department,

acting under authority of the International Tra�c in Arms Regulation (ITAR),

which de�nes cryptographic devices (including software) as munitions. The U.S.

government has historically been reluctant to grant export licenses for encryp-

tion products stronger than some level (usually not de�ned publicly); it does

grant licenses for encryption products that are less strong and for authentication

products, no matter how strong.

The National Security Agency (NSA) has de facto control over export of

cryptographic products. A vendor seeking to export �rst must submit the

product to the NSA for approval, then submit the export license application

to the State Department. Upon approval by the State Department, the export

will go under the jurisdiction of the Commerce Department, which has never

put serious obstacles in the way of exporting cryptography. However, the State

Department will not grant a license without NSA approval and routinely grants

licenses whenever NSA does approve. Therefore, the decisions over exporting

cryptography ultimately rest with the NSA.

It is the stated policy of the NSA not to restrict export of cryptography for

authentication; it is only concerned with the use of cryptography for privacy. A

vendor seeking to export a product for authentication only will be granted an

export license as long as it can demonstrate that the product can not be easily

adapted for use in encryption; this is true even for very strong systems, such as

RSA with large key sizes. Furthermore, the bureaucratic procedures are simpler

for authentication products than privacy products. An authentication product

needs NSA and State Dept. approval only once, whereas an encryption product

may need approval for every sale or every product revision.

Export policy is currently a matter of great controversy. The Software Pub-

lishers Association (SPA), a software industry group, has recently been nego-

tiating with the government in order to get export license restrictions eased;

one agreement was reached that allows simpli�ed procedures for export of two

bulk encryption ciphers, RC2 and RC4 (see Question 6.5), when the key size

is limited. In March 1992, the Computer Security and Privacy Advisory Board
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voted unanimously to recommend a national policy review of cryptographic is-

sues, including export policy. The Board is an o�cial advisory board to NIST

(see Question 8.1) whose members are drawn from both the government and

the private sector. The Board stated that a public debate is the only way to

reach a consensus policy to best satisfy competing interests: national security

and law enforcement agencies like restrictions on cryptography, especially for

export, whereas other government agencies and private industry want greater

freedom for using and exporting cryptography. Export policy has been decided

solely by agencies concerned with national security, without signi�cant input

from those interested in encourage commerce in cryptography. U.S. export pol-

icy may change frequently over the next few years.

2 RSA

2.1 What is RSA?

RSA is a public-key cryptosystem for both encryption and authentication; it

was invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman [66].

It works as follows:

Take two large primes, p and q, and �nd their product n = pq; n is called the

modulus. Choose a number, e, less than n and relatively prime to (p�1)(q�1),

and �nd its inverse, d, mod (p� 1)(q � 1), which means that ed � 1 mod (p�

1)(q�1); e and d are called the public and private exponents, respectively. The

public key is the pair (n; e); the private key is d. The factors p and q must be

kept secret, or destroyed. All of the above operations are simple to perform. It

is (presumably) di�cult to obtain the private key d from the public key (n; e).

Note that if one could factor n into p and q, one could obtain the secret key

d. The entire security of RSA is predicated on the assumption that factoring

is di�cult. Here is how RSA can be used for privacy and authentication (in

practice, actual use is slightly di�erent; see Questions 2.13 and 2.14):

RSA privacy: suppose Alice wants to send a private message, m, to Bob.

Alice creates the ciphertext c by exponentiating: c = m

e

mod n, where e and n

are Bob's public key. To decipher, Bob also exponentiates: m = c

d

mod n, and

recovers the original message m.

RSA authentication: suppose Alice wants to send a signed document m to

Bob. Alice creates a signature s by exponentiating: s = m

d

mod n, where d and

n belong to Alice's key pair. She sends s and m to Bob. To verify the signature,

Bob exponentiates and checks that the message m is recovered: m = s

e

mod n,

where e and n belong to Alice's public key.

Thus encryption and authentication take place without any sharing of private

keys: each person uses only other people's public keys and his own private key.

Anyone can send an encrypted message or verify a signed message using only

public keys. Only those in possession of the correct private key can decrypt or
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sign a message. The RSA system rests on the belief that factoring is di�cult;

an easy factoring method would \break" RSA (see Questions 2.6 and 4.4).

2.2 Why use RSA rather than DES?

RSA is not an alternative or replacement for DES; rather it supplements DES

(or another bulk encryption cipher) and is used together with DES in a secure

communications environment. (Note: for an explanation of DES, see Question

5.1.)

RSA allows two important functions not provided by DES: secure key ex-

change without prior exchange of secrets, and digital signatures. For encrypted

messaging, RSA and DES are usually combined as follows: �rst the message is

encrypted with a random DES key, and then, before being sent over an inse-

cure communications channel, the DES key is encrypted with RSA. Together,

the DES-encrypted message and the RSA-encrypted DES key are sent. In this

protocol, known as an RSA digital envelope, no secret information is sent (un-

encrypted) over a public channel.

One may wonder, why not just use RSA to encrypt the whole message and

not use DES at all? Although this may be �ne for small messages, DES (or

another cipher) is preferable for larger messages because it is much faster than

RSA.

In some situations, RSA is not necessary and DES alone is su�cient. This

includes multi-user environments where secure DES-key agreement can take

place, for example by the two parties meeting in private. Also, RSA is not

necessary in a single-user environment; for example, if you want to keep your

personal �les encrypted, just do so with DES using your personal password as

the DES key. RSA only makes sense in a multi-user environment.

Any system in which digital signatures are desired needs RSA or some other

public-key system.

2.3 Are there hardware implementations of RSA?

There are many commercially available hardware implementations of RSA, and

there are frequent announcements of newer and faster chips. For a survey, see

[12]. The fastest current RSA chip has a throughput of 64 Kbits/second; it is

expected that RSA speeds will reach 1 Mbit/second within a year or so.

2.4 How fast is RSA?

An \RSA operation," whether for encrypting or decrypting, signing or verifying,

is essentially a modular exponentiation, which can be performed by a series of

modular multiplications.

In practical applications, it is common to choose a small public exponent

for the public key; in fact, entire groups of users can use the same public ex-
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ponent. This makes encryption faster than decryption and veri�cation faster

than signing. Algorithmically, public-key operations are O(k

2

) steps, private

key operations are O(k

3

) steps, and key generation is O(k

4

) steps, where k is

the number of bits in the modulus.

The fastest hardware implementations of RSA available today (see Question

2.3) achieve throughput greater than 64 Kbits per second with a 512-bit modulus

(implying that it performs at least 128 RSA private-key operations per second);

one was recently announced at the IEEE Custom Integrated Circuits Conference

of May 1992. Chips are being planned that will approach or exceed 1 Mbit per

second with a 512-bit modulus.

DES is much faster than RSA. In software, DES is generally at least 100

times as fast as RSA. In hardware, DES is between 1000 and 10,000 times as

fast, depending on the implementations. RSA will probably narrow the gap

a bit in coming years, as it �nds growing commercial markets, but will never

match the performance of DES.

2.5 How much extra message length is caused by using RSA?

Only a very small amount of data expansion is involved when using RSA. For

encryption, a message may be padded to a length that is a multiple of the

block length, which is the length of the modulus (currently 512 bits in most

applications).

For authentication, the message is not encrypted and thus there is no mes-

sage expansion; however, the signature itself is appended. An RSA signature is

one block length. Sometimes certi�cates (see Question 3.5) may be included as

well; certi�cates are used in conjunction with any digital signature method. A

typical RSA certi�cate, with 512 bit moduli, is 300 bytes long; a message might

include two certi�cates.

2.6 What would it take to break RSA?

There are a few possible interpretations of \breaking RSA". The most damaging

would be for an attacker to discover the private key corresponding to a given

public key; this would enable the attacker both to read all messages encrypted

with the public key and to forge signatures. The obvious way to do this attack

is to factor the public modulus, n, into its two prime factors, p and q. From

p, q, and e, the public exponent, the attacker can easily get d, the private key.

The hard part is factoring n; the security of RSA depends of factoring being

di�cult. In fact, the task of recovering the private key is equivalent to the

task of factoring the modulus: you can use d to factor n, as well as use the

factorization of n to �nd d. See Questions 4.5 and 4.6 regarding the state of the

art in factoring. It should be noted that hardware improvements alone will not

weaken RSA (as long as appropriate key lengths are used); in fact, hardware

improvements should increase the security of RSA (see Question 4.5).
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Another way to break RSA is to �nd a technique to compute e-th roots

mod n. Since c = m

e

, the e-th root of c is the message m. This attack would

allow someone to recover encrypted messages and forge signatures even without

knowing the private key. This attack is not known to be equivalent to factoring.

No methods are currently known that attempt to break RSA in this way. The

mere existence of a possible attack along these lines means that breaking RSA is

not equivalent to factoring; such an equivalence would be desirable because then

it is only necessary to keep track of one hard problem (factoring) and as long as

factoring remains di�cult the security of RSA would be assured. Other public-

key systems have the advantage of being provable equivalent to either factoring

or some other hard problem (see Question 2.17). Wiener has suggested attacks

that are feasible when the private exponent is short [72]; this situation is easily

avoided.

The attacks just mentioned are the only ways to break RSA in such a way

as to be able to recover all messages encrypted under a given key. There are

other methods, however, which aim to recover single messages; success would

not enable the attacker to recover other messages encrypted with the same key.

Suppose someone sends the same message m to three others, who each have

public exponent e = 3. If an attacker knows this and sees the three messages,

he will be able to recover the message m. This attack and ways to prevent it

are discussed in [30]. There are also some chosen ciphertext attacks, in which

the attacker creates his own ciphertext and sees the corresponding plaintext,

perhaps by tricking a legitimate user into decrypting a fake message. Davida

[21] gives some examples.

The simplest single-message attack is the guessed plaintext attack. An at-

tacker sees a ciphertext, guesses that the message might be \Attack at dawn",

and encrypts his guess with the public key of the recipient; by comparison with

the actual ciphertext, he knows whether he was correct. This attack can be

thwarted by appending some random bits to the message.

There are also, of course, attacks that aim not at RSA itself but at a given

insecure implementation of RSA; these do not count as \breaking RSA" because

it is not any weakness in the RSA algorithm that is exploited, but rather a weak-

ness in a speci�c implementation. For example, if someone stores his private key

insecurely, an attacker may discover it. One cannot emphasize strongly enough

that to be truly secure RSA requires a secure implementation; mathematical

security measures, such as choosing a long key size, are not enough. In practice,

most successful attacks will likely be aimed at insecure implementations and at

the key management stages of an RSA system. See Section 3 for discussion of

secure key management in an RSA system.

2.7 Are strong primes necessary in RSA?

In the literature pertaining to RSA, it has often been suggested that in choosing

a key pair, one should use \strong" primes p and q to generate the modulus n.
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Strong primes are those with certain properties that make the product n hard

to factor by speci�c factoring methods; desirable properties have included, for

example, the existence of a large prime factor of p� 1 and a large prime factor

of p + 1. The reason for these concerns is that some factoring methods are

especially suited to primes p such that p � 1 or p + 1 has only small factors;

strong primes are resistant to these attacks. Strong primes were recommended

in the original RSA paper [66], by Knuth [36] and in a host of other technical

papers; more recently, the X.509 international standard recommended the use

of strong primes for RSA in 1989.

However, recent advances in factoring (see Question 4.6) appear to have

obviated the need for strong primes; the elliptic curve factoring algorithm is one

such advance. The new factoring methods have as good a chance of success on

strong primes as on weak primes; therefore, choosing strong primes does not

increase resistance to attacks. So for now the answer is negative: strong primes

are not necessary or even bene�cial in using RSA (although there is no danger

in using them, except that it takes longer to generate a key pair). However, new

factoring algorithms may be developed in the future which once again target

primes with certain properties; if so, choosing strong primes may again help to

increase security.

2.8 How large a modulus should be used in RSA?

It depends how on your security needs. The larger the modulus, the greater the

security but also the slower the RSA operations. One should choose a modulus

length upon consideration of one's security needs (e.g., the value of the protected

data, how long it needs to be protected for) and also how much money one's

potential enemy has. A good analysis of security obtained by a given modulus is

given by Rivest [64], in the context of discrete logarithms modulo a prime, but

it applies to RSA as well. Rivest estimates that a 512-bit modulus, currently

the most common modulus length, can be factored with an $8.2 million e�ort

today, less in the future. Those with extremely valuable data (or large potential

damage from digital forgery) should use a larger modulus, say 700 or 800 bits

in length. A certifying authority (see Question 3.5) should use a modulus of

length 1000 bits or more, because the validity of many other key pairs depends

on the security of the one central key.

It may be that the amount of time a signed document is considered legally

valid will be a function of the length of the key used to sign it; then the choice

of key length should also depend on how far into the future a document needs

to remain valid. For example, a job application does not need to be valid for

more than two years, so one's ordinary key would su�ce. But one might want

one's will to be valid for at least twenty years, so a longer key should be used

to sign the will. See Question 3.17.

The key of an individual user will expire after a certain time, say, two years

(see Question 3.11). Upon expiration, the user will generate a new key which
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should be a few digits longer than the old key to re
ect the speed increases of

computers over the two years. Recommended key length schedules will probably

be published by some authority or public body.

Users should keep in mind that the estimated times to break RSA are aver-

ages only. A large factoring e�ort, attacking many thousands of 512-bit moduli,

will likely succeed in factoring at least one in a reasonable time. Although the

security of any individual key is still strong, with some factoring methods there

is always a chance that the attacker may get lucky and factor it quickly.

Regarding the cost in extra time (see Question 2.4), doubling the modulus

length will, on average, increase the time required for public-key operations

(encryption and signature veri�cation) by a factor of 4 and increase the time

for private key operations (decryption and signing) by a factor of 8; public keys

can be kept small and constant. Key generation time will increase by a factor

of 16, but this is not a common operation for most users.

2.9 How large should the primes be?

The two primes, p and q, which compose the modulus, should be of roughly

equal length; this will make the modulus harder to factor than if one of the

primes was very small. For example, if one chose to use a 512-bit modulus, one

could use primes of lengths 255 and 257.

2.10 How does one �nd random numbers for keys?

One needs a source of random numbers in order to �nd two random primes

to compose the modulus. If one used a predictable method of generating the

primes, an adversary could mount an attack by trying to recreate the key gen-

eration process.

Random numbers obtained from a physical process are in principle the best.

One could use a hardware device, such as a diode; some are sold commercially

on computer add-in boards for this purpose. Another idea is to use physical

movements of the computer user, such as keystroke timings measured in mi-

croseconds. By whichever method, the random numbers may still contain some

correlations preventing su�cient statistical randomness. Therefore, it is best to

run them through a good hash function (see Question 6.2), such as MD5, before

actually using them.

Another approach is to use a pseudorandom number generator fed by a

random seed. Since these are deterministic algorithms, it is important to �nd

one that is very unpredictable and also to use a truly random seed. There is a

wide literature on the subject of pseudorandom number generators. See Knuth

[36] for an introduction.

Note that one does not need random numbers to determine the public and

private exponents in RSA, after choosing the modulus. One can simply choose
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an arbitrary value for the public exponent, which then determines the private

exponent, or vice versa.

2.11 What if users of RSA run out of distinct primes?

There are enough prime numbers that RSA users will never run out of them.

For example, the number of primes of length 512 bits or less exceeds 10

150

,

according to the prime number theorem; this is more than the number of atoms

in the universe.

2.12 How do you know if a number is prime?

It is generally recommended to use probabilistic primality testing, which is much

quicker than proving a number prime. One can use a probabilistic test to

generate a number that is prime with error probability less than 2

�100

. For

further discussion of some primality testing algorithms, see the bibliography of

[3]. For some empirical results on the reliability of simple primality tests see

[62]; one can perform very fast primality tests and be extremely con�dent in the

results. A simple algorithm for choosing probable primes was recently analyzed

by Brandt and Damgard [9].

2.13 How is RSA used for encryption in practice?

RSA is combined with a secret-key cryptosystem, such as DES, to encrypt a

message by means of an RSA digital envelope.

Suppose Alice wishes to send an encrypted message to Bob. She �rst en-

crypts the message with DES, using a randomly chosen DES key. Then she looks

up Bob's public key and uses it to encrypt the DES key. The DES-encoded mes-

sage and the RSA-encoded DES key together form the RSA digital envelope and

are sent to Bob. Upon receiving the digital envelope, Bob decrypts the DES

key with his private key, then uses the DES key to decrypt to message itself.

2.14 How is RSA used for authentication in practice?

Suppose Alice wishes to send a signed message to Bob. She uses a hash function

on the message (see Question 6.2) to create a message digest, which serves as a

\digital �ngerprint" of the message. She encrypts the message digest with her

RSA private key; this is her digital signature, which she sends to Bob along with

the message itself. Bob, upon receiving the message and signature, decrypts the

signature with Alice's public key to recover the message digest. He then hashes

the message with the same hash function Alice used and compares the result to

the message digest decrypted from the signature. If they are exactly equal, the

signature has been successfully veri�ed and he can be con�dent that the message

did indeed come from Alice. If, however, they are not equal, then the message

11



either originated elsewhere or was altered in transmission, and he rejects the

message.

In practice, the public exponent is usually much smaller than the private

exponent; this means that veri�cation of a signature is faster than the signing.

This is desirable because a message or document will only be signed by an

individual once, but the signature may be veri�ed many times.

It must be infeasible for anyone to either �nd a message that hashes to a given

value or to �nd two messages that hash to the same value. If it were feasible, an

intruder could attach a false message onto Alice's signature. Hash functions such

as MD4 and MD5 (see Question 6.3) have been designed speci�cally to have the

property that �nding a match is infeasible, and are therefore considered suitable

for use in cryptography.

A certi�cate is a signed document attesting to the identity and public key

of the person signing the message (see Question 3.5). Its purpose is to prevent

someone from impersonating someone else, using a phony key pair. Accompa-

nying a signature will be the name of a certifying authority and a serial number

of a certi�cate; this will allow the recipient (or a third party) to check the au-

thenticity of the public key. It may also be the case that one or more certi�cates

are enclosed with a signed message.

2.15 Does RSA help detect transmission errors?

An RSA digital signature is superior to a handwritten signature in that it attests

to the contents of a message as well as to the identity of the signer. As long

as a secure hash function is used, there is no way to take someone's signature

from one document and attach it to another, or to alter the signed message in

any way.

For this reason, RSA allows recipients to detect any transmission errors

in any messages they receive. Any alteration in the message will cause the

veri�cation procedure to fail. Of course, it does not allow the recipient to

decide whether the cause of failure was a transmission error or an attempted

forgery.

2.16 Does RSA help protect against computer viruses?

In the same way that RSA will detect a transmission error, it can be used to

detect any alterations in a �le stored on a disk. Since viruses act by altering

�les, they can be detected.

One method is to use RSA to sign every �le, and later to verify the signatures;

if a signature fails to verify, it indicates that the �le has been changed, possibly

by a virus. Of course, it could have been changed for other reasons, such as

recompilation of source code or physical problems on the hard disk. If the

change looks suspicious, one would need to follow up by running a speci�c virus

detection/elimination program.
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Another method of virus protection is for commercial software vendors to

supply a digital signature with their programs. A user can verify this signature,

using the vendor's public key, either when �rst installing the software or anytime

thereafter. Of course, a clever virus might attempt change the public key used to

verify the signature and thus escape detection. And the virus-checking program

itself would be a likely target for viruses. A more secure method might be to

incorporate the virus-checking capability in the operating system, but again,

the operating system must contain strong mechanisms to protect itself.

2.17 What are alternatives to RSA?

Other public-key cryptosystems have been proposed. A mathematical problem

called the knapsack problem was the basis for several systems [46], but these

have lost favor because many versions were broken. Another system, designed

by ElGamal [25], was the basis for several later signature methods, including one

by Schnorr [67], which in turn was the basis for the digital signature standard

proposed by NIST [54] (see Question 7.1). Because of the NIST proposal, the

relative merits of these signature systems versus RSA signatures has received a

lot of attention; see [53] for a discussion. The ElGamal system has been used

successfully in applications. It is slower for encryption and veri�cation than

RSA and its signatures are larger than RSA signatures.

There have been proposed cryptosystems based on discrete exponentiation in

the �nite �eld GF(2

n

); their advantage is that they work e�ciently in hardware

(faster than RSA). However, doubts have been raised about the security of these

systems because the underlying problem may be easier to solve than factoring

[56, 28].

For key exchange only, Di�e and Hellman [24] proposed a system in 1976,

before RSA; it permits secure exchange of keys in an otherwise conventional

secret-key system. A group of users share a common modulus; one must be

careful to make the common modulus large, because its compromise would com-

promise all users in the group. This system is in use today.

Probabilistic encryption has the attraction of being resistant to a guessed

ciphertext attack (see Question 2.6), but at a cost of data expansion. Interest-

ing probabilistic encryption methods were proposed by Goldwasser and Micali

[27] and by Blum and Goldwasser [8]. In probabilistic encryption, the same

plaintext encrypted twice under the same key will give, in general, two di�erent

ciphertexts.

For digital signatures, Rabin [60] proposed a system which is provably equiv-

alent to factoring; this is an advantage over RSA, where one may still have a

lingering worry about an attack unrelated to factoring. Rabin's method is sus-

ceptible to an active chosen message attack, however, in which the attacker

tricks a signer into signing a certain message. Another signature scheme, by

Fiat and Shamir [26], is based on interactive zero-knowledge protocols, but can

be adapted for signatures. It is faster than RSA and is provably equivalent to
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factoring, but the signatures are much larger than RSA signatures. Other vari-

ations, however, lessen the necessary signature length; see [15] for references.

These identity-based systems may be better suited to smart card applications

than to network communications.

Cryptosystems based on mathematical operations on elliptic curves have

been gaining popularity in recent years. Koblitz [38] and Miller [49] have written

introductions to this topic.

Major advantages of RSA over other public-key cryptosystems include the

fact that it can be used for both encryption and authentication, and that it has

been around for many years and has successfully withstood much scrutiny. RSA

has received far more attention, study, and actual use than any other public-key

cryptosystem, and thus RSA has more empirical evidence of its security than

more recent and less scrutinized systems. In fact, a large number of public-

key cryptosystems which at �rst appeared secure were later broken; see [13] for

some case histories. RSA's resistance to attack during many years of vigorous

attempts to break it is unrivaled by any other public-key system.

2.18 Is RSA currently in use today?

RSA is used in a wide variety of products, platforms and industries around

the world. It is found in many commercial software products, such as Lotus'

Notes and Delrina's PerForm Pro, an electronic forms software package that

incorporates RSA digital signatures. RSA is being built into operating systems

by Microsoft, IBM, Apple, Sun, Digital and Novell. In hardware, RSA can

be found in Secure Telephone Units by Motorola and AT&T, as well as on

Xerox Ethernet cards. Many other vendors, such as Wordperfect Corp., have

announced plans to incorporate RSA into products.

RSA is used in many branches of the U.S. government, including NASA, the

CIA, the Departments of Defense, State and Labor, and the national laborato-

ries, such as Lawrence Livermore and Sandia National Labs; it is not clear how

widely used RSA is within these organizations. The government can use RSA

without licensing the patent.

Major corporations have chosen RSA for internal use; examples include Boe-

ing, Shell Oil, DuPont, Raytheon, and Citicorp. Research institutions using

RSA include the University of California, Bellcore, and the National Science

Foundation.

RSA is even more widely used in Europe than in the U.S. For example, RSA

is the standard of the European �nancial community for electronic funds transfer

(see Question 2.19), whereas the U.S. banking industry has not yet incorporated

RSA into routine use (although it may do so with upcoming o�cial standards).

The use of RSA is undergoing a period of rapid expansion and may become

ubiquitous within a few years. Adoption of RSA seems to be proceeding more

quickly for authentication (digital signatures) than for privacy (encryption),
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perhaps because products for authentication are easier to export than those for

privacy.

2.19 Is RSA an o�cial standard today?

RSA is part of many o�cial standards worldwide. The ISO (International Stan-

dards Organization) 9796 standard [32] lists RSA as an acceptable cryptographic

algorithm, as does the Consultative Committee in International Telegraphy and

Telephony (CCITT) X.509 security standard [17]. RSA is part of both the Soci-

ety for Worldwide Interbank Financial Telecommunication (SWIFT) standard

and the French �nancial industry's ETEBAC 5 standard [18]. The Australian

digital signature standard, AS2805.6.5.3 [71], also speci�es RSA.

RSA is found in Internet's proposed PEM (Privacy Enhanced Mail) standard

(see Question 6.6) and the PKCS standard for the software industry (see Ques-

tion 6.7). The OSI Implementors' Workshop (OIW) has issued implementors'

agreements [57] referring to PKCS and PEM, which each include RSA.

A number of other standards are currently being developed and will be

announced over the next couple of years; many are expected to include RSA as

either an endorsed or a recommended system for privacy and/or authentication.

2.20 Is RSA a de facto standard today?

RSA is the most widely used public-key cryptosystem today and has often been

called a de facto standard. Its use is widespread in many areas and industries

(see Question 2.18) and growing rapidly. Furthermore, use of RSA far outstrips

use of any other public-key system (see Question 2.17).

Regardless of the o�cial standards, the existence of a de facto standard is

extremely important for the development of a digital economy. If one public-

key system is used all over for authentication, then signed digital documents

can be exchanged between users in di�erent nations using di�erent software on

di�erent platforms; this interoperability is necessary for a true digital economy

to develop.

The lack of secure authentication has been a major obstacle in achieving

the promise that computers would replace paper; paper is still necessary almost

everywhere for contracts, checks, o�cial letters, legal documents, and identi�-

cation. With this core of necessary paper transaction, it has not been feasible

to transform completely into a society based on electronic transactions. Digital

signatures and their veri�ability are the exact tools necessary to convert the

most resistant paper-based documents to digital electronic media. Digital sig-

natures make possible the existence of leases, wills, college transcripts, checks,

and voter registration forms that exist only in electronic form; any paper ver-

sion would just be a \copy" of the electronic original. All of this is enabled by

a standard for authentication.
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2.21 What will happen to RSA if NIST adopts another method to

be the o�cial standard?

If NIST adopts a method other than RSA as an o�cial standard, both RSA and

the NIST standard would coexist, at least for the foreseeable future; NIST has

recently proposed a non-RSA method, DSS, for digital signatures (see Question

7.1). RSA has already established itself as the standard in Europe; that status

would not change due to a NIST action, so anyone doing business with or in

Europe would need to use RSA. RSA is also the most widely used in commercial

software in the U.S., so users wishing to maintain compatibility and interoper-

ability would continue to use RSA. The NIST standard, however, would be used

by the U.S. government, so software vendors and others doing business with the

government would need to use the NIST standard. The most likely solution for

software manufacturers is to provide both RSA and NIST standard capabilities

and let users choose whichever method most suits their purposes. Some people

have voiced concern that a NIST standard (non-RSA) may be less secure than

RSA (see Question 7.2). Although NIST has recently taken steps to reassure

the public that its (proposed) standards are secure, those still distrustful would

use RSA.

In the long term, one public-key system is likely to become so dominant as

to eliminate altogether the use of any other system, leaving a single standard

in place. If NIST chooses an alternative to RSA, the establishment of a single

global standard will not occur for many years.

2.22 Is RSA patented?

RSA is patented under U.S. Patent 4,405,829, issued 9/20/83 and owned by

Public Key Partners (PKP), of Sunnyvale, California; the patent expires 17

years after issue, in 2000. RSA is usually licensed together with other public-key

cryptography patents (see Question 1.5). PKP has a standard, royalty-based li-

censing policy which can be modi�ed in the case of special circumstances. PKP

has also publicly told the U.S. government that it will make licenses for RSA

\available under reasonable terms" if RSA were chosen as an o�cial govern-

ment standard. If a software vendor, having licensed the public-key patents,

incorporates RSA into a commercial product, then anyone who purchases the

end product has the legal right to use RSA within the context of that software.

The U.S. government can use RSA without a license because it was invented at

MIT with government funding. RSA is not patented outside North America.

In North America, a license is needed to \make, use or sell" RSA. However,

PKP has a policy that anyone may use RSA non-commercially for a personal,

academic or intellectual reason without a license; an example of such use would

be the implementation of RSA as a programming project for a computer class.

RSA Laboratories has made available (in the U.S. and Canada) at no charge a

collection of cryptographic routines in source code, including the RSA algorithm;

16



it can be used for non-commercial purposes (see Question 6.8).

2.23 Can RSA be exported from the U.S.?

Export of RSA falls under the same U.S. laws as all other cryptographic prod-

ucts. See Question 1.6 for details.

RSA used for authentication is more easily exported than when used for

privacy. In the former case, export is allowed regardless of key (modulus) size,

although the exporter must demonstrate that the product cannot be easily con-

verted to use for encryption. In the case of RSA use for privacy (encryption),

the U.S. government generally does not allow export if the key size exceeds 512

bits. Export policy is currently a subject of debate, and the export status of

RSA may well change in the next year or two.

Regardless of U.S. export policy, RSA is available abroad in non-U.S. prod-

ucts.

3 Key Management

3.1 What key management issues are involved in public-key cryp-

tography?

Secure methods of key management are extremely important. In practice, most

attacks on public-key systems will probably be aimed at the key management

levels, rather than at the cryptographic algorithm itself. The key management

issues mentioned here are discussed in detail in later questions.

Users must be able to get a key pair suited to their security and e�ciency

needs. There must be a way to look up people's public keys. Users must be

con�dent of the accuracy of someone's public key; otherwise an intruder can

either change public keys listed in a directory, or represent himself as another

user. Conversely, users must be able to publicize their public keys so that

others will have con�dence in their accuracy. Certi�cates are used for this

purpose. Certi�cates must be securely obtainable, not forgeable, and used in

such a way that an intruder cannot misuse them. The issuance of certi�cates

must proceed in a secure way, impervious to attack. If someone's private key is

lost or compromised, others must be made aware of this and no longer encrypt

messages under the public key nor accept messages signed with the compromised

private key. Users must be able to store their private keys securely, so that

no intruder can �nd it, yet readily accessible for legitimate use. Keys need

to be valid only until a speci�ed expiration date. The expiration date must be

chosen properly and publicized securely. Some documents need to have veri�able

signatures beyond the time when the key used to sign them has expired.

Although most of these key management issues arise in any public-key cryp-

tosystem, for convenience they are discussed here in the context of RSA.
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3.2 Who needs a key?

Anyone who wishes to sign messages or to receive encrypted messages must have

a key pair. People may have more than one key. For example, someone might

have a key a�liated with his or her work and a separate key for personal use.

Furthermore, other entities will have RSA keys. This can include electronic

entities such as modems, workstations, and printers. It can also mean organi-

zational entities such as a corporate department, a hotel registration desk, or a

university registrar's o�ce.

3.3 How does one get an RSA key pair?

Each RSA user should generate his or her own RSA key pair. It may be tempting

within an organization to have a single site that generates keys to all members

who request one, but this is a security risk because it involves the presence and

transmission of private keys over a network as well as catastrophic consequences

in the case of an attacker in�ltrating the key-generation site. Each node on

a network should be capable of local key generation, so that private keys are

never transmitted and so no external key source must be trusted. Networks with

trusted operating systems may have a central node to perform key generation.

Once generated, a user must register his or her public key with some central

administration, called a certifying authority. The certifying authority returns

to the user a certi�cate attesting to the veracity of the user's public key along

with other information (see Questions 3.5 and following). Most users should not

obtain more than one certi�cate for the same key, in order to simplify various

bookkeeping tasks associated with the key.

3.4 Should a public key or private key be shared among users?

In RSA, modulus and private key should be unique to every user. The public ex-

ponent can be common to a group of users without security being compromised.

Public exponents in use today are 3 and 2
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+ 1; because they are small, the

public-key operations (encryption and signature veri�cation) are fast relative

to the private key operations (decryption and signing). If one public exponent

becomes a standard, software and hardware can be optimized for that value.

In public-key systems based on discrete logarithms, such as ElGamal, Di�e-

Hellman, or DSS, it has often been suggested that a group of people should share

a modulus. This would make breaking a key more attractive to an attacker

however, because one could break every key with only slightly more e�ort than

it would take to break a single key. To an attacker, therefore, the average cost

to break a key is much lower than if every key had a separate modulus. Thus

one should be very cautious about using a common modulus.
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3.5 What are certi�cates?

Certi�cates are digital documents attesting to the binding of a public key to

an individual or other entity. They allow veri�cation of the claim that a given

public key does in fact belong to a given individual. Certi�cates aim to prevent

someone from misrepresenting himself or herself under another name with a

phony key.

Certi�cates contain information about a public key, including the public key

itself, the name of the person to whom it is issued, the expiration date of the

key, the length of the modulus, the name of the organization that issued the

certi�cate, and the serial number of the certi�cate. The certi�cate may also

contain optional information, such as the organization or title of the person to

whom it is issued. Most importantly, it contains the digital signature of the

issuer. The format of certi�cates is governed by the CCITT X.509 international

standard; thus certi�cates can be read or written by any application complying

with X.509. Further re�nements are found in the PKCS set of standards (see

Question 6.7), which are extensions of X.509.

The certi�cate is issued by a certifying authority (see Question 3.7) and

signed with the certifying authority's private key.

3.6 How are certi�cates used?

One exhibits one's certi�cate in order to assure con�dence in one's public key.

On the veri�er's side, the signer's certi�cate can itself be veri�ed to assure that

no forgery or false representation has occurred. These uses can be performed

with greater or lesser rigor depending on the context in which RSA is being

used.

The most secure use of authentication involves enclosing one or more certi�-

cates with every signed message. The receiver of the message would verify the

certi�cate with the certifying authority's public key and, now con�dent of the

public key of the individual sender, verify the message's signature. There may

be two or more certi�cates enclosed with the message, forming a hierarchical

chain, wherein one certi�cate testi�es to the authenticity of the previous cer-

ti�cate. At the end of a certi�cate hierarchy is a top-level certifying authority,

which is trusted without a certi�cate from any other certifying authority. The

public key of the top-level certifying authority must be independently known,

for example by being widely published.

The more familiar the sender is to the receiver of the message, the less need

there is to enclose certi�cates. If Alice sends messages to Bob every day, Alice

can enclose a certi�cate chain on the �rst day, which Bob veri�es. Bob thereafter

stores Alice's public key and no more certi�cates are necessary. A sender whose

company is known to the receiver may need to enclose only one certi�cate (issued

by the company), whereas a sender whose company is unknown to the receiver

may need to enclose two certi�cates. A good rule of thumb is to enclose just
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enough of a certi�cate chain so that the issuer of the highest level certi�cate in

the chain is well-known to the receiver.

According to the PKCS standards for public-key cryptography (see Question

6.7), every signature points to a certi�cate that validates the public key of the

signer. Speci�cally, it contains the name of the issuer of the certi�cate and the

serial number of the certi�cate. Thus even if no certi�cates are enclosed with a

message, a veri�er can still use the certi�cate chain to check the status of the

public key.

3.7 Who issues certi�cates and how?

Certi�cates are issued by a certifying authority (CA), which can be any trusted

central administration willing to play the role of vouching for the identities

of those to whom it issues certi�cates. A company may issue certi�cates to

its employees, a university to its students, a town to its citizens. Other CAs

will be available to issue certi�cates to una�liated individuals. In order to

prevent forged certi�cates, a CA must either publicize its public key or provide

a certi�cate from a higher-level CA attesting to the validity of its public key. In

this way, hierarchies of certifying authorities will form.

Certi�cate issuance proceeds as follows. Alice generates her own key pair and

sends the public key to an appropriate CA with some proof of her identi�cation.

The CA checks the requester's identi�cation and if the request really did come

from Alice, sends her a certi�cate attesting to the binding between Alice and her

public key, along with a hierarchy of certi�cates verifying the CA's public key.

Alice can include this certi�cate chain whenever desired in order to demonstrate

the legitimacy of her public key. In order to simplify bookkeeping operations

associated with verifying the signature, Alice should not request a certi�cate

from any other certifying authority.

Since the CA must check for proper identi�cation, it will prove convenient

for a local organization to become a CA for the purpose of issuing certi�cates

to its own members and employees. There will also be CAs to issue una�liated

certi�cates.

Di�erent CAs may issue certi�cates with varying levels of identi�cation re-

quirements. One CA may insist on seeing a driver's license, another may want

the certi�cate request form to be notarized, yet another may want �ngerprints

of anyone requesting a certi�cate. Each CA must publish its own identi�cation

requirements and standards, so that veri�ers can attach the appropriate level

of con�dence in the certi�ed name-key bindings.

An example of a certi�cate-issuing protocol is Apple Computer's upcoming

Open Collaborative Environment (OCE); Apple OCE users can generate a key

pair and then request and receive a certi�cate for the public key. The certi�cate

request must be notarized.

A public key may be recerti�ed upon expiration, if it has not been compro-

mised and if the modulus is long enough to warrant the recerti�cation.
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3.8 What is a CSU, or, How do certifying authorities store their

private keys?

It is extremely important that private keys of certifying authorities are stored

securely, because compromise would enable undetectable forgeries. For the high-

est security, CAs can keep their keys in a CSU, or Certi�cate Signing Unit. The

CSU is a high-security, tamper-proof hardware box, which destroys its contents

if ever opened. The CSU must be secure against attacks using electromagnetic

radiation. Not even employees of the certifying authority should have access to

the private key itself, but only the ability to use the private key in the process

of issuing certi�cates.

There are many possible designs for CSUs; here is a description of one design

commonly found in current implementations. The CSUs are activated by a set

of data keys, which are physical keys capable of storing digital information. The

data keys use secret-sharing technology such that several people must all use

their data keys to activate the CSU. This prevents one disgruntled CA employee

from producing phony certi�cates. There may also be separate physical keys

which store private keys of certi�cate issuers in encrypted form. These are used

for backup only, and their information can only be read by a CSU box with the

correct RSA private key inside.

Note that if the CSU is destroyed, say in a �re, no security is compromised.

Certi�cates signed by the CSU are still valid, as long as the veri�er uses the

correct public key. Some CSUs will be manufactured so that a lost private key

can be restored into a new CSU. See Question 3.10 for discussion of lost CA

private keys.

Some smaller CAs may choose to store their private keys in software rather

than in hardware. If implemented securely, this is a viable and less expensive

alternative for organizations which choose not to purchase CSUs. Eventually,

CSUs will be su�ciently inexpensive for all CAs to use.

3.9 Are certifying authorities susceptible to attack?

One can think of many attacks aimed at the certifying authority.

Consider the following attack. Suppose Bob wishes to impersonate Alice. If

Bob can convincingly sign messages as Alice, he can send a message to Alice's

bank saying \I wish to withdraw $10,000 from my account. Please send me the

money." To carry out this attack, Bob generates a key pair and sends the public

key to a certifying authority saying \I'm Alice. Here is my public key. Please

send me a certi�cate." If the CA is fooled and sends him such a certi�cate,

he can fool the bank, and his attack will succeed. In order to prevent such an

attack the CA must verify that a certi�cate request did indeed come from its

purported author. It must require su�cient evidence that it is Alice and not

anyone else who is requesting the certi�cate. It may, for example, require Alice

to appear in person and show a birth certi�cate and take her �ngerprints. Every
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CA must publicly state its identi�cation requirements and policies. Others can

then attach an appropriate level of con�dence to the certi�cates.

If the private key of a certifying authority should become known to an at-

tacker, the attacker could forge certi�cates, allowing an accomplice to misrep-

resent himself (see Question 3.10). For this reason, a certifying authority must

take extreme precautions to prevent illegitimate access to its private key. The

private key should be kept in a high-security box, known as a Certi�cate Signing

Unit (CSU), which destroys its contents if ever opened. See Question 3.8 for

details about the CSU.

The certifying authority's public key might be the target of an extensive

factoring attack. For this reason, CAs should use very long keys, preferably

1000 bits or longer. A CA should also change its key every year or two. Top-

level certifying authorities are exceptions: it may not be practical for them to

change keys so frequently because the key may be written into software used by

a large number of veri�ers.

Consider the following attack. Alice bribes Bob, who works for the certifying

authority, to issue to her a certi�cate in the name of Fred. Now Alice can send

messages signed in Fred's name and anyone receiving such a message will believe

its authenticity because a full and veri�able certi�cate chain will accompany the

message. This attack can be hindered by requiring the cooperation of two (or

more) employees to generate a certi�cate; the attacker now has to bribe two

employees rather than one. For example, is some of today's CSU boxes, three

employees must each insert a data key containing secret information in order to

authorize the CSU to generate certi�cates. Unfortunately, there may be other

ways to generate a forged certi�cate by bribing only one employee. If each

certi�cate request is checked by only one employee, that one employee can be

bribed and slip a false request into a stack of real certi�cate requests. Note that

a corrupt employee cannot reveal the certifying authority's private key to an

attacker, as long as it is properly stored.

Another attack is to steal the CSU box; to succeed, however, the attacker

must also steal the correct number of data keys to activate the CSU. More

devious is for an attacker to surreptitiously replace the CSU box with another

of his own devising. When the data keys are inserted, the fake box can record

the secret information that authorizes the real box to produce certi�cates and

then transmit the information back to the attacker, who can now get the real box

to produce some phony certi�cates. A protocol in which the CSU is challenged

to sign a random test message before insertion of data keys might block this

attack, although an extremely sophisticated fake CSU could surmount even this

precaution.

Consider the following attack. Alice tries to factor the modulus of the certi-

fying authority. It takes her 15 years, but she �nally succeeds, and she now has

the old private key of the certifying authority. The key has long since expired,

but she can forge a certi�cate dated 15 years ago attesting to a phony public key

of some other person, say Bob; she can now forge a document with a signature
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of Bob dated 15 year ago (perhaps a will leaving everything to Alice). The un-

derlying issue is how to verify a signed document dated many years ago (longer

than the key expiration period). This issue is discussed in Question 3.17.

Note that the certifying authority never sees the private keys of those to

whom it issues certi�cates, so it cannot betray its customers in that way.

3.10 What if the certifying authority's key is lost or compromised?

If the certifying authority's key is lost or destroyed but not compromised, cer-

ti�cates signed with the old key are still valid, as long as the veri�er knows to

use the old public key to verify the certi�cate.

A CA which loses its key can restore it in the following way. The CA �rst

noti�es the manufacturer of the CSU, who then supplies a new CSU identical

from the one that held the key. The CA then loads the lost key into the new CSU

by using a securely encrypted form of the lost key. This secure recovery method

depends on each CA storing its key outside its CSU in an extremely secure

fashion: the key must be stored in encrypted form, such that it can only be

decrypted by a CSU box identical (with the same unique internal information)

to that in which the key was generated, and, preferably, the cooperation of

several people is required for restoring into a new box.

A compromised CA key is a much more dangerous situation. An attacker

who discovers a certifying authority's private key can issue phony certi�cates in

the name of the certifying authority, which would enable undetectable forgeries;

for this reason, all precautions must be taken to prevent compromise, including

those outlined in Questions 3.8 and 3.9. If a compromise does occur, the CA

must immediately cease issuing certi�cates under its old key and change to a new

key. If it is suspected that some phony certi�cates were issued, all certi�cates

must be recalled, going back until before the compromise. In fact, all certi�cates

signed with the compromised key should be reissued, because any of them could

be a forgery, backdated if necessary. This could be relaxed if certi�cates were

registered with a digital timestamping service (see Question 3.18). Compromise

of a top-level CA's key should be considered catastrophic.

3.11 For how long is a key pair valid?

In order to guard against a long-term factoring attack, every key must have

an expiration date after which it is no longer valid. The time to expiration

must therefore be much shorter than the expected factoring time, or, from the

other perspective, the key length must be long enough to make the chances of

factoring within the expiration time extremely small (see Question 2.8).

Currently it is recommended that users' keys expire two years after issue [35].

One should choose a key size appropriate to this period of time (see Question

2.8). After expiration, the user needs to choose a new key, which should be

longer than the old key, perhaps by several digits, to re
ect the speed increase
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of computer hardware, and any improvements in factoring algorithms, during

the two years. Recommended key length schedules would be published.

The expiration date of a key accompanies the public key in a certi�cate or

a directory listing. The signature veri�cation program should check for expira-

tion; one should not accept a message signed with an expired key. This means

that when one's own key expires, everything signed with it will no longer be

considered valid. Of course, there may be cases where it is important that a

document is considered valid for a much longer period of time (see Question

3.17). One possibility is to use an extra-long key to sign such a document. This

implies that the length of time a signed document is valid should be a function

of the key length.

One may also recertify a key that has expired, if the modulus length is

su�cient and if the key has not been compromised. The certifying authority

would issue a new certi�cate for the same key. All new signatures would point

to the new certi�cate instead of the old; in fact, old signatures could be altered

to point to the new certi�cate instead of the old (this part of the signature is in

plaintext and easily updated). In order to make these solutions practical and

e�cient, each key should be certi�ed by exactly one certifying authority.

However, the fact that computer hardware continues to improve argues for

replacing expired keys with new, longer keys every few years. Key replacement

enables one to take advantage of the hardware improvements to increase the

security of the RSA system. Faster hardware has the e�ect of increasing security

(perhaps vastly), but only if key lengths are increased regularly (see Question

4.5).

3.12 What happens if I lose my private key?

It may happen that your private key may be lost or destroyed, but not compro-

mised; this can happen, for example, if you forget the password used to access

your key. In this case, you can no longer sign or decrypt messages, but anything

previously signed with the lost key is still valid. You need to choose, certify

and publish a new key as quickly as possible to minimize the number of mes-

sages people send you encrypted under your old key, messages which you can

no longer read.

3.13 What happens if my private key is compromised?

If your private key is compromised, that is, you suspect an attacker may have

obtained your private key, then you must assume that some enemy can read

encrypted messages sent to you and forge your name on documents. The se-

riousness of these consequences underscore the importance of protecting your

private key with extremely strong mechanisms (see Question 3.15).

You must immediately notify your certifying authority and have your old

key placed on a Certi�cate Revocation List (see Question 3.14); this will inform
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people that the key has been revoked. Then choose a new key and obtain the

proper certi�cates for it. It may be a good idea to use the new key to resign

documents that you signed with the compromised key. You should also increase

the security of the device you use to store your private key.

3.14 What are Certi�cate Revocation Lists (CRLs)?

CRLs are lists of public keys that have been revoked before their scheduled

expiration date. There are several reasons why a key might need to be revoked

and placed on a CRL. The compromise of a key is one case. Also, some keys

might be associated with an individual at a company; for example, the o�cial

name associated with a key might be \Alice Avery, Vice President, Argo Corp."

If Alice were �red, her company might not want her to be able to sign messages

with that name and therefore the company would place her key on the CRL. If

a government employee were discovered to be a spy, his key would be placed on

the CRL.

When verifying a signature, one can check the relevant CRL to be sure the

signer's key has not been revoked (which would indicate a possible forgery).

Whether it is worth the time to perform this check depends on the importance

of the signed document. Signatures on legal contracts, for example, should

always be checked against their relevant CRLs.

CRLs are maintained by certifying authorities (CAs) and provide informa-

tion about revoked keys originally certi�ed by the CA. CRLs only list current

keys because expired keys should not be accepted in any case; when a revoked

key is past its original expiration date it is removed from the CRL. Although

maintained in a distributed manner, there will be central repositories for CRLs,

that is, sites on networks containing the latest CRLs from many organizations.

An institution like a bank might want an in-house CRL repository to make CRL

searches feasible on every transaction.

One reason why a public key should only be certi�ed by exactly one CA is

to simplify bookkeeping operations such as a CRL lookup or entering a key in

a CRL.

3.15 How should I store my private key?

Private keys must be stored securely, since forgery and loss of privacy could re-

sult from compromise. For an individual user, keeping the private key encrypted

and stored in software should su�ce. For example, a password could serve as a

DES key for encrypting the private key. The private key should never be stored

anywhere in plaintext form. Of course, the password itself must be maintained

with high security, not written down, and not easily guessed; the password may

prove an easier target for cryptographic attack than factoring the public key.

One idea is to keep the password only on a local workstation, one not accessible

by a network; unfortunately, this prevents the user from signing messages when
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away from his workstation. Ultimately, private keys will be stored in encrypted

form on portable hardware, such as a smart card; the move to hardware storage

will mean a large jump in security.

Users with particularly high security needs, including certifying authorities,

should use special hardware boxes to protect their keys. Features of these boxes

include mechanisms that will destroy the contents if ever opened and devices to

require two separate keys to use the box for signing or decryption. Some issues

surrounding their use are discussed in Question 3.9.

3.16 How does one �nd someone else's public key?

There are many possible ways �nd someone's key. You could call him up and

ask him to send you his public key via email; you could request it via email as

well. Certifying authorities may serve as directories; if the person in question

works for company Z, look in the directory kept by the Z certifying authority.

Directories must be secure against unauthorized tampering, because users of a

directory must be con�dent that a public key listed in the directory actually

belongs to the person listed. Otherwise, you might send private encrypted

information directly to your enemy.

Eventually, full-
edged directories will arise, serving as online white or yellow

pages; you will be able to look up a name and get a public key. If they are

compliant with CCITT X.509 standards, the directories will contain certi�cates

along with public keys; the presence of certi�cates will lower the security needs

of the directory.

People might have multiple keys, for example, a work key, a personal key,

and a long-modulus key for long-term documents. Each key, however, is certi�ed

only once.

3.17 How can signatures remain valid beyond the expiration dates

of their keys, or, How do you verify a 20-year-old signature?

Normally, a key expires after two years and a document signed with an expired

key should not be accepted. However, there are many cases where it is necessary

for signed documents to be regarded as legally valid for much longer than two

years; long-term leases and contracts are examples. How should these cases be

handled? Many solutions have been suggested but it is unclear which will prove

the best. Here's some possibilities.

One can have special long-term keys as well as the normal two-year keys.

Long-term keys should have much longer modulus lengths and be stored more

securely than two-year keys. If a long-term key expires in 50 years, any docu-

ment signed with it would remain valid within that time. One problem with this

method is that any compromised key must remain on the relevant CRL until

expiration (see Question 3.14); if 50-year keys are routinely placed on CRLs,

the CRLs could grow in size to unmanageable proportions.
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The previous idea can be modi�ed as follows. For long-term documents

choose a key with a very long modulus. The key will expire in only two years,

as normal. At expiration time, if it has not been compromised, the key can be

recerti�ed, that is, issued a new certi�cate by the certifying authority, so the

key will be valid for another two years. Depending on the key size, a maximum

number of recerti�cations would be allowed. Now a compromised key only needs

to be kept on a CRL for at most 2 years, not 50. Some mechanism will allow

a verifying party to know that the key is still valid since a proper certi�cate

chain still validates it (even though it is a di�erent certi�cate chain than that

used to originally sign the document). There is a part of every signature that

points to a certi�cate authenticating the signing key. This certi�cate name and

serial number is in plaintext, as speci�ed by the PKCS standard, and could be

updated to point to the new certi�cate. Another method is to simply update

the key expiration date in the certifying authority's key database/directory. A

veri�er can get the name of the certifying authority from the signature and then

check the expiration. One problem with these methods is that someone might

try to invalidate a long-term contract by refusing to renew his key. This problem

can be circumvented by registering the document with a digital timestamping

service (see Question 3.18) at the time it is originally signed.

Another solution is to resign a document with a new key whenever the old key

expires. The resigned document includes the previous signatures. This shares

with the previous solution the problem that arises if one signer of a multiparty

contract refuses to resign; use of a digital timestamping service might enable a

better solution.

3.18 What is a digital timestamping service?

A digital timestamping service (DTS) issues timestamps which associate a date

and time with a digital document in a cryptographically strong way. The digital

timestamp (DT) can be used at a later date to prove that an electronic document

existed at the time stated on its timestamp. For example, when a physicist has a

brilliant idea, he can write about it on his word processor and have the document

timestamped. The timestamp and document together can later prove that he

deserves the Nobel Prize, even though his arch rival may have been the �rst to

publish.

Here's how it works. Suppose Alice signs a document and wants it times-

tamped. She computes a message digest of the document using a secure hash

function (see Question 6.2) and then sends the message digest (but not the doc-

ument itself) to the DTS, which sends her in return a digital timestamp, which

is a document consisting of the message digest, the date and time it was re-

ceived at the DTS, and the signature of the DTS. Note that the message digest

does not reveal any information about the content of the document; therefore

the DTS cannot eavesdrop on the documents it timestamps. Later, Alice can

present the document and timestamp together to prove when it was written. A
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veri�er computes the message digest of the document, makes sure it matches

the digest on the timestamp, and then veri�es the signature of the DTS on the

timestamp.

To be reliable, the timestamps must not be forgeable. First, the DTS itself

must have an extremely long key; if we want the timestamps to be reliable for

100 years, the DTS may need a key several thousand bits long. Second, the

private key of the DTS must be stored in utmost security; it should only exist

inside a box which erases its memory upon any tampering. Third, the date and

time must come from a clock, also inside the tamperproof box, which cannot be

reset and which will keep accurate time for years, perhaps for decades. Fourth,

the timestamps must only be able to be created by using the tamperproof box

with the date, time, and private key supplied from inside the box.

A cryptographically strong DTS using only software has been suggested

[29], but it requires other clients of the DTS to save their timestamps and to

cooperate in the timestamp veri�cation process. Modi�ed versions may avoid

such requirements.

The use of a DTS would appear to be extremely important, if not essential,

for maintaining the validity of documents over many years (see Question 3.17).

Suppose a landlord and tenant sign a twenty-year lease. The public keys used

to sign the lease will expire after two years; solutions such as recertifying the

keys or resigning every two years with new keys require the cooperation of

both parties several years after the original signing. If one party, perhaps the

landlord, becomes dissatis�ed with the lease, he or she will refuse to cooperate.

What should be done is to register the lease with the DTS at the time of the

original signing, and both parties should receive a copy of the timestamp, which

can be used years later to enforce the integrity of the original lease.

3.19 What other digital services will accompany widespread use of

RSA?

Widespread use of public-key cryptography will spur the development of other

digital services. In fact, the full integration of digital authentication into an

economy and society requires the presence of other services to complement the

privacy and authentication of public-key cryptography. This digital infrastruc-

ture is just now beginning to emerge. Some of the main digital support services

are brie
y described below; they are discussed in greater detail elsewhere in this

document.

Certifying authorities (CAs) (see Question 3.7) issue certi�cates testifying

to the binding between a public key and a name. They can be used by someone

verifying a signature to check that the public key used for the veri�cation does

indeed belong to the purported signer. CAs are necessary to prevent forgery

through fake keys. Many companies and other organizations will become CAs

and issue certi�cates to their employees and members.
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CRL repositories are central, public locations where CRLs (certi�cate revo-

cation lists) will be stored and maintained (see Question 3.14). They are used

by a signature veri�er to insure that the public key of the signer has not been

compromised and thus is still valid. CRL repositories are necessary to minimize

the damage that can result from the theft of a private key.

Directories (see Question 3.16) store lists of public keys and their associated

names, organizations and expiration dates, as well as many other attributes

about the listed objects. They are analogous to today's phone directories, al-

though expanded in function. Directories will be used by anyone who wishes to

send an encrypted message to, or verify a signed message from, another person

whose public key is not already known to the �rst person. Directories are neces-

sary to ensure the global aspect of electronic communications using public-key

cryptography; otherwise, such communications would be more or less con�ned

within a local organization or other community.

A digital timestamping service (DTS) (see Question 3.18) issues documents

that can be used later to verify that a given message existed at a given time.

A DTS is necessary to maintain the long-term integrity of signed digital doc-

uments, and will be used for everything from long-term corporate contracts to

personal diaries and letters. Today, if an historian discovers some lost letters of

Mark Twain, their authenticity is checked by physical means. But a similar �nd

100 years from now may consist of an author's letters in computer �les; digital

timestamps may be the only way to authenticate the �nd.

Many other digital services will appear, such as electronic cash, electronic

passports, and electronic journalism. Predictions cannot be made with much

accuracy.

4 Factoring and Discrete Log

4.1 What is a one-way function?

A one-way function is a mathematical function that is signi�cantly easier to

perform in one direction (the forward direction) than in the opposite direction

(the inverse direction). One might, for example, compute the function in min-

utes but only be able to compute the inverse in months or years. A trap-door

one-way function is a one-way function where the inverse direction is easy if you

know a certain piece of information (the trap door), but di�cult otherwise.

4.2 What is the signi�cance of one-way functions for cryptogra-

phy?

Every public-key cryptosystem is based on a (presumed) trap-door one-way

function; this was realized by the inventors of public-key cryptography [24].

The public key gives information about the particular instance of the function;
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the secret key is information about the trap door. Whoever knows the trap

door can perform the function easily in both directions, but anyone lacking the

trap door can perform the function only in the forward direction. The forward

direction is used for encryption and signature veri�cation; the inverse direction

is used for decryption and signature generation.

In almost all public-key systems, the size of the key corresponds to the size

of the inputs to the one-way function; the larger the key, the greater the di�er-

ence between the e�orts necessary to compute the function in the forward and

inverse directions (for someone lacking the trap door). For a digital signature

to be unbreakable for years, it is necessary to use a trap-door function with in-

puts large enough that someone without the trap door would need many years

to compute the inverse function, but also so that anyone can compute in the

forward direction in at most a few minutes.

All practical public-key cryptosystems are based on functions that are be-

lieved to be one-way, but have not been proven to be so. This means it is

theoretically possible that an algorithm will be discovered that can compute

the inverse function easily without a trap door; this would render any cryp-

tosystem based on the function insecure and useless. The possibility of such

a breakthrough is discussed in Question 4.7, in the context of the factoring

problem.

4.3 What is the factoring problem?

Factoring is the act of splitting an integer into a set of smaller integers (factors)

which, when multiplied together, form the original integer. Prime factorization

requires splitting an integer into factors which are prime numbers; every integer

has a unique prime factorization. Multiplying two prime integers together is

easy, but as far as we know, factoring the product is much more di�cult.

4.4 What is the signi�cance of factoring in cryptography?

Factoring is the underlying, presumably hard problem upon which several pub-

lic-key cryptosystems are based, including RSA. It is believed that factoring a

large integer is much more di�cult than multiplying integers together to form a

larger integer. The importance of factoring is discussed in the context of RSA.

In RSA, the one-way function is modular exponentiation; the private key is

the trap door which allows one to invert the one-way function. Factoring the

modulus would allow recovery of the trap door; the bottom line is that if anyone

besides the possessor of the private key could factor the modulus, he could then

decrypt messages and forge signatures. Thus the security of RSA depends on

the factoring problem being di�cult. Unfortunately, it has not been proven

that factoring must be di�cult, and there remains a remote possibility that a

quick and easy factoring method might be discovered (see Question 4.7). There

is also a remote possibility of uncovering the trap door without factoring.
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Factoring large numbers takes more time than factoring smaller numbers.

Therefore, the size of the key pair in RSA determines how secure an actual use

of RSA is; the larger the key size, the longer it would take an attacker to factor

the public key, and thus the more resistant to attack is RSA.

4.5 Has factoring been getting easier?

Factoring has become easier over the last ten years for two reasons: computer

hardware has grown faster, and better factoring algorithms have been developed.

Hardware improvement will continue inexorably, but it is important to re-

alize that hardware improvements make RSA more secure, not less. This is

because a speed improvement that allows an attacker to factor a number two

digits longer than previously will allow a legitimate RSA user to use keys dozens

of digits longer than previously. Thus although the hardware improvement does

help the attacker, it helps the legitimate user much more. This general rule

may fail in the sense that factoring may take place using fast machines of the

future, attacking RSA keys of the past; in this scenario, only the attacker gets

the advantage of the hardware improvement. This consideration argues for us-

ing a larger key size today than one might otherwise consider warranted. It also

argues for replacing one's RSA key with a longer key every few years, in order

to take advantage of the extra security o�ered by hardware improvements.

Better factoring algorithms have provided much more help to the attacker

than hardware improvements. As RSA and cryptography in general have gar-

nered much attention, so has the factoring problem, and many researchers have

been searching for ways to improve the factoring process. They have been at

least partially successful; the last several years have seen the discovery of new

factoring algorithms and modi�cation of others. This has had the e�ect of mak-

ing factoring easier irrespective of the size of the modulus length or speed of the

hardware. However, factoring is still a very di�cult problem.

Overall, any recent decrease in security due to algorithm improvement can

be o�set by increasing the key size. In fact, between general computer hardware

improvements and special-purpose RSA hardware improvements (see Question

2.3), increases in key size (maintaining speed of RSA operations) have kept pace

or exceeded increases in algorithm e�ciency, resulting in no net loss of security.

As long as hardware continues to improve at a faster rate than that at which the

complexity of factoring algorithms declines, the security of RSA will increase,

assuming RSA users regularly increase their key size by an appropriate amount.

The open question is how much faster factoring algorithms can get. There must

be some limit to factoring speed, but no one knows where.

4.6 What are the best factoring methods in use today?

Factoring is a very active �eld of research among mathematicians and computer

scientists; the best factoring algorithms are mentioned below with some refer-
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ences and their big-O asymptotic e�ciency. O notation measures how fast an

algorithm is; it gives the number of operations (to order of magnitude) in terms

of n, the number to be factored, and p, a prime factor of n.

For textbook treatment of factoring algorithms, see [36], [42], [37], and [11].

Factoring algorithms come in two 
avors, special purpose and general pur-

pose; the e�ciency of the former depend both on the number to be factored

and on the unknown factors, whereas the e�ciency of the latter depend only on

the number to be factored. General purpose algorithms are the most important

ones in the context of cryptographic systems and their security.

The best general purpose algorithm today is the multiple polynomial quad-

ratic sieve (mpqs) [68], which has running time O(exp(

p

lnn ln lnn)). The mpqs

(and some of its variations) is the only general purpose algorithm that has

successfully factored numbers greater than 100 digits. A variation due to Lenstra

and Manasse [44], known as ppmpqs, has been popular.

Special purpose factoring algorithms include the Pollard rho method [58],

with running time O(

p

p), and the Pollard p�1 method [59], with running time

O(p

0

), where p

0

is the largest prime factor of p�1. Both of these take a number

of steps that is exponential in the size of n; they thus take too long for most

factoring jobs. The elliptic curve method (ECM) [45] is superior to these; its

asymptotic running time is the same as mpqs in the worst case, and somewhat

better on average. Even though the ECM depends on the size of factors, in

many ways it behaves like a general-purpose algorithm.

The recent number �eld sieve method [43], also a special-purpose algorithm,

is superior to all the other methods, but so far it only works for factoring num-

bers of a narrow class. It is currently being modi�ed to obtain a general-purpose

factoring algorithm [14]. The generalized number �eld sieve may become the

top factoring algorithm within a few years, if it proves to be practical.

Rivest estimates [64] that a 512-bit number would need 2.1 million MIPS-

years to factor by the best general purpose factoring algorithm today; a MIPS-

year is the amount of computation done by a 1 MIPS (million instructions per

second) computer in one year. His calculations can be adapted to estimate the

MIPS-years required to factor a number of any length.

A good picture of present-day factoring capability can be obtained by looking

at recent results of the RSA Factoring Challenge (see Question 4.8).

4.7 What are the prospects for theoretical factoring breakthroughs?

Although factoring is strongly believed to be a di�cult mathematical problem,

it has not been proved so. Therefore there remains a possibility that an easy fac-

toring algorithm will be discovered. This development, which would render RSA

useless, would be highly surprising and the possibility is considered extremely

remote by the researchers most actively engaged in factoring research.

Another possibility is that someone will prove that factoring is di�cult. This

negative breakthrough is probably more likely than the positive breakthrough
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discussed above, but would also be unexpected at the current state of theoretical

factoring research. This development would guarantee the security of RSA

beyond a certain key size.

4.8 What is the RSA Factoring Challenge?

RSA Data Security Inc. (RSADSI) administers a factoring contest with quar-

terly cash prizes. Those who factor numbers listed by RSADSI earn points

toward the prizes; factoring smaller numbers earns more points than factoring

larger numbers. Send email to challenge-info@rsa.com for information.

Results of the contest are useful for those who wish to know the state of the

art in factoring. The results show the size of numbers factored, which algorithms

are used, and how much time was required to factor each number. Send email to

challenge-info@rsa.com for information about how to obtain the successful

factoring results.

4.9 What is the discrete log problem?

The discrete log problem, in its most common formulation, is to �nd the ex-

ponent x in the formula y = g

x

mod p; in other words, it seeks to answer the

question, To what power must g be raised in order to obtain y, modulo the

prime number p?

Like the factoring problem, the discrete log problem is believed to be di�cult

and also to be the inverse direction of a one-way function. For this reason, it

has been the basis of several public-key cryptosystems, including the ElGamal

system and the proposed DSS (see Questions 2.17 and 7.1). The discrete log

problem bears the same relation to these systems as factoring does to RSA; in

particular, the security of these systems rests on the presumption that discrete

logs are di�cult to compute.

The discrete log problem has received much attention in recent years from

researchers looking for e�cient algorithms. For descriptions of today's most

e�cient algorithms see [42] and [20]. The best discrete log problems have an

expected running time of approximately O(exp(

p

ln p ln ln p)), which is similar

to the expected running time of the best general-purpose factoring algorithm.

Rivest [64] has analyzed the expected time to solve discrete log both in terms

of MIPS-years and money.

4.10 Which is easier, factoring or discrete log?

The asymptotic running time of the best discrete log algorithm is approximately

the same as for the best general purpose factoring algorithm. Therefore, it

requires about as much e�ort to solve the discrete log problem mod a 512-bit

prime as to factor a 512-bit RSA modulus. A recent paper [40] cites experimental

evidence that the discrete log problem is slightly harder than factoring: they
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suggest that the e�ort necessary to factor a 110-digit integer is the same as

the e�ort to solve discrete logarithms modulo a 100-digit prime. In practice,

this di�erence is so slight that it should not be a signi�cant consideration when

choosing a cryptosystem.

Historically, it has been the case that an algorithmic advance in either prob-

lem, factoring or discrete logs, was then applied to the other. This suggests

that the degrees of di�culty of both problems are closely linked, and that any

breakthrough, either positive or negative, will a�ect both problems equally.

5 DES

5.1 What is DES?

DES is the Data Encryption Standard, an encryption block cipher de�ned by

and endorsed by the U.S. government [50] in 1977 for use within the U.S. It was

originally developed at IBM. DES has been extensively studied over the last 15

years and is the most well-known and widely used cryptosystem in the world.

DES is a secret-key, symmetric cryptosystem. When used for communica-

tion, both sender and receiver must know the same secret key, which is used

both to encrypt and decrypt the message. DES can also be used for single-user

encryption, for example, to store �les on a hard disk in encrypted form. In

a multi-user environment, secure key distribution may be di�cult; public-key

cryptography was invented to solve this problem (see Question 1.3).

DES operates on 64-bit blocks with a 56-bit key. It was designed to be

implemented in hardware, and is fast. It is very good for bulk encryption, that

is, for encrypting a large set of data.

NIST (see Question 8.1) recerti�es DES as an o�cial U.S. government en-

cryption standard every �ve years; DES was last recerti�ed in 1988 [51]. NIST

has indicated that it is considering not recertifying DES again [69].

5.2 Has DES been broken?

Researchers have been trying to \break" DES for a long time. The obvious

method of attack is brute-force exhaustive search of the key space; this takes

2

54

steps on average. Early on it was suggested [23] that a rich and powerful

enemy could build a special-purpose computer capable of breaking DES by ex-

haustive search in a reasonable amount of time. Later, Hellman [31] showed a

time-memory trade-o� that allows improvement over exhaustive search if mem-

ory space is plentiful, after an exhaustive precomputation. These ideas helped

engender doubts about the security of DES. There were also accusations that

the NSA intentionally weakened DES. Despite these suspicions, no feasible way

to break DES was discovered.
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Just recently, however, the �rst attack on DES that is better than exhaustive

search was announced by Eli Biham and Adi Shamir [6], using a new technique

known as di�erential cryptanalysis. This attack requires encryption of 2

47

cho-

sen plaintexts, i.e., plaintexts chosen by the attacker. Changing keys frequently

is not an adequate defense, because the attack tests each possible key as soon as

it is generated during the attack; therefore the expected time to success is not

a�ected by key changes (as long as the chosen plaintexts are always encrypted

under the current key). Although a theoretical breakthrough, this attack is not

practical under normal circumstances because it requires the attacker to have

easy access to the DES device in order to encrypt the chosen plaintexts. The

attacker also needs a large amount of computing resources, an amount currently

available only to powerful organizations; those powerful enough to carry out this

attack are probably capable of simple exhaustive search as well.

The consensus is that DES, when used properly, is secure against all but the

most powerful enemies. Biham and Shamir have stated that they consider DES

secure. It is used extensively in a wide variety of cryptographic systems; most

implementations of public-key cryptography include DES at some level.

5.3 How does one use DES securely?

One should change DES keys frequently, in order to prevent attacks that require

sustained data analysis. In a communications context, one must also provide

secure key agreement, that is, �nd a secure way of communicating the DES key

to both sender and receiver. Use of RSA for key management solves both these

issues: it generates a di�erent DES key for each message, and it provides secure

key management by encrypting the DES key with the receiver's RSA public

key. RSA, when used for privacy, can be regarded as a tool for improving the

security of DES (or any other bulk encryption cipher).

If one wishes to use DES to encrypt �les stored on a hard disk, it is not

feasible to frequently change the DES keys, as this would entail decrypting and

then re-encrypting all �les upon each key change. Instead, one should have a

master DES key with which one encrypts the list of DES keys used to encrypt

the �les; one can then change the master key frequently without much e�ort.

Another technique for improving security is triple encryption, that is, en-

crypting each message block under three di�erent DES keys in succession. Triple

encryption is equivalent to doubling the key size of DES, and helps prevent de-

cryption by an enemy capable of single-key exhaustive search [47].

Aside from the issues mentioned above, DES can be used for encryption

in several di�erent modes. Some are more secure than others. ECB (electronic

codebook) mode simply encrypts each 64-bit block of plaintext one after another

under the same 56-bit DES key; it is the simplest mode. In CBC (cipher block

chaining) mode, each 64-bit plaintext block is XORed with the previous cipher-

text block before being encrypted with the DES key. Thus the encryption of

each block depends on previous blocks and the same 64-bit plaintext block can
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encrypt to di�erent ciphertext depending on its context in the overall message.

In CBC mode, the very �rst plaintext block is XORed with an initialization

vector before encryption. CFB (cipher feedback) mode allows one to use DES

with block lengths less than 64 bits. Detailed discussion of the various DES

modes can be found in [52].

In practice, CBC is the most widely used mode of DES, and is speci�ed

in several standards. For additional security, one could use triple encryption

with CBC, but since CBC by itself is usually considered secure enough, triple

encryption is generally not used.

5.4 Can DES be exported from the U.S.?

Export of DES, either in hardware or software, is strictly regulated by the U.S.

State Department and the NSA (see Question 1.6). The government rarely

approves export of DES, despite the fact that DES is widely available overseas;

�nancial institutions and foreign subsidiaries of U.S. companies are exceptions.

RC2 and RC4 (see Question 6.5) are alternatives to DES with special export

status designed to ease export approval, at least when used with restricted key

size.

5.5 What are the alternatives to DES?

When it became apparent that NIST may stop recertifying DES for o�cial use,

people started designing alternatives. One is FEAL (Fast Encryption ALgo-

rithm), a cipher for which attacks have been discovered [5], although new ver-

sions have been proposed. Another recently proposed cipher [39] seems promis-

ing, although it has not yet received su�cient scrutiny to instill full con�dence

in its security.

Rivest has developed the ciphers RC2 and RC4 (see Question 6.5), which

can be made as secure as necessary because they use variable key sizes. Faster

than DES, they have the further advantage of special U.S. government status

whereby the export approval is expedited and simpli�ed if the key size is limited

to 40 bits. For this reason developers looking to export have been adopting RC2

and RC4 as alternatives to DES.

5.6 Is DES a group?

It has been frequently asked whether DES encryption is closed under composi-

tion; i.e., is encrypting a plaintext under one DES key and then encrypting the

result under another key equivalent to a single encryption under a single key?

If the answer is yes, it indicates DES to be weaker than if the answer is no.

DES is not a group. Although there has been much speculation and dis-

cussion of this issue for years, it was settled only recently [16]. This follows
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previously reported experimental evidence to the same e�ect. For a more com-

plete discussion of the signi�cance of the issue, see [34]. Since DES is not a

group, techniques such as triple encryption do in fact increase the security of

DES.

6 Miscellaneous

6.1 What is the legal status of documents signed with digital sig-

natures?

The purpose of digital signatures is to replace handwritten signatures; ulti-

mately, this means that digital signatures must be as legally binding as hand-

written signatures. NIST has stated that its proposed digital signature standard

(see Question 7.1) should be capable of \proving to a third party that data was

actually signed by the generator of the signature." Furthermore, U.S. federal

government purchase orders will be signed by any such standard; this implies

that the government will support the legal authority of digital signatures in the

courts. Some preliminary legal research has also resulted in the opinion that

digital signatures would meet the requirements of legally binding signatures for

most purposes, including commercial use as de�ned in the Uniform Commercial

Code (UCC). A GAO (Government Accounting O�ce) decision request by NIST

also opines that digital signatures will meet the legal standards of handwritten

signatures [19].

However, since the validity of documents with digital signatures has never

been challenged in court, their legal status is not yet well-de�ned. In order

for digital signatures to carry the same authority (or more) as handwritten

signatures, they must �rst be used to sign a legally binding document, such

as a contract, and then be challenged by one of the parties. The court would

then consider the security of the particular signature scheme and issue a ruling.

If this happened several times, lines would be drawn regarding which digital

signature methods and how large a key size are required for a digital signature

to be legally binding.

Currently, if two people wish to digitally sign a series of contracts, it is

recommended that they �rst sign a paper contract in which they agree for the

future to be bound by any contracts digitally signed by them with a given

signature method and minimum key size.

Digital signatures have the potential to possess greater legal authority than

handwritten signatures. If a ten-page contract is signed by hand on the tenth

page, one cannot be sure that the �rst nine pages have not been altered. If the

contract was signed by digital signatures, however, a third party can verify that

not one byte of the contract has been altered.
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6.2 What is a hash function? What is a message digest?

A hash function is a computation that takes a variable size input and returns

a string of �xed size, which is called the hash value. If the hash function is

one-way, i.e., hard to invert, it is also called a message-digest function, and the

result is called a message digest. The idea is that a digest represents concisely

the longer message or document from which it was computed; one can think of a

digest as a \digital �ngerprint" of the larger message. Examples of well-known

hash functions are MD4, MD5 (see Question 6.3), and SHS (see Question 6.4).

Although hash functions in general have many uses in computer programs,

in cryptography they are used to generate a small string (the digest) that can

represent a much larger string (such as a �le or message); digital signatures

are then computed using the message digest rather than the message itself (see

Question 2.14). It is much more e�cient to compute a digital signature on a

small input like a message digest than on an arbitrarily large input like a mes-

sage; the hash function is much faster than the signing function. Additionally,

a digest can be made public without revealing the contents of the message from

which it is derived. This is important in digital timestamping, for example,

where one can get a document timestamped while not revealing the document

itself to the timestamping service (see Question 3.18).

A hash function used for digital authentication must have certain properties

that make it secure enough for cryptographic use. Speci�cally, it must be infea-

sible to �nd a message which hashes to a given value and it must be infeasible

to �nd two distinct messages which hash to the same value. The ability to �nd

a message hashing to a given value would enable an attacker to substitute a fake

message for a real message that was signed; a digital signature will verify cor-

rectly for any message with the right hash value. It would also enable someone

to disown a message he signed by claiming that he actually signed a di�erent

message hashing to the same value. The ability to �nd two distinct messages

hashing to the same value could enable an attack whereby someone is tricked

into signing one among a series of look-alike messages which hashes to the same

value as another message with a quite di�erent meaning.

A proposed hash function mush create digests of a minimum length in order

to prevent attacks based on exhaustive search. For example, if a hash function

produces 100-bit numbers, exhaustive search would take 2

100

attempts on av-

erage to match a given value, and approximately 2

50

attempts on average to

�nd two inputs producing the same digest. Of course, just being long enough

doesn't guarantee the security of a hash function.

6.3 What are MD2, MD4 and MD5?

MD2, MD4 and MD5 (MD stands for Message Digest) are widely used hash

functions designed by Ron Rivest speci�cally for cryptographic use. They pro-

duce 128-bit digests and are believed secure against attack, i.e., it is conjectured
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that an e�ort on the order of 2

128

is necessary to �nd a message hashing to a

given digest and that an e�ort of 2

64

is necessary to �nd two messages hashing

to the same value.

MD2 is the slowest of the three. MD4 [63] is the fastest and is part of the

SNMP (Secure Network Management Protocol) Internet standard. MD5 [65]

has been described by Rivest as \MD4 with safety belts": it has a more con-

servative design than MD4 and can be considered more secure, but at a cost

of being approximately 33% slower. Currently, MD5 is the most often recom-

mended hash algorithm for digital signatures. The Internet Privacy-Enhanced

Mail standard (see Question 6.6) lists the MD algorithms as endorsed message

digest functions. There is also an extension of MD4 which produces a 256-bit

hash value [63].

No serious weaknesses have been discovered in any of the three MD algo-

rithms. An attempt by Berson to apply di�erential cryptanalysis to MD5 [4]

failed to reveal any feasible attack, despite some interesting theoretical analysis.

Di�erential cryptanalysis has in fact found weaknesses in two other proposed

hash functions, N-hash and Snefru.

A digital signature system can be broken by attacking either the di�cult

cryptographic problem used for signing or the hash function used to create the

message digests. When choosing an authentication system, it is generally a good

idea to choose a signature method and a hash function that require comparable

e�orts to break; any extra security in one of the two components is wasted, since

attacks will be directed at the weaker component. The MD hash functions can

be attacked with 2

64

operations, which is comparable to the e�ort necessary

to break 512-bit RSA, although the attack on MD is harder in practice, since

it requires 2

64

memory units and the ability to trick the attackee into signing

a message of your choice. MD5 is a good choice when using RSA with a 512-

bit modulus. However, those with greater security needs, such as certifying

authorities, should use a longer modulus and a hash function that produces a

longer message digest; either SHS (160-bit digest) or a modi�ed version of MD4

that produces a 256-bit digest [63] would su�ce.

The MD algorithms are available for unrestricted use. Details of MD4 and

MD5 with sample C code are available as Internet RFCs (Request for Com-

ments) 1320 and 1321 respectively. They can be obtained via anonymous ftp at

ftp.nisc.sri.com in the rfc directory.

6.4 What is SHS?

The Secure Hash Standard (SHS) [55] is a hash function proposed by NIST

(see Question 8.1); it is designed for use with its proposed Digital Signature

Standard (see Question 7.1). It produces a 160-bit hash value from a variable

size input. SHS is structurally similar to MD4 and MD5. It is 25% slower than

MD5 but may be more secure, because it produces message digests that are

25% longer than the MD functions. SHS has not yet been formally adopted by
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NIST as an o�cial government standard.

6.5 What are RC2 and RC4?

RC2 and RC4 are variable-key-size cipher functions designed by Ron Rivest and

meant for fast bulk encryption. They are alternatives to DES (see Question 5.1)

that are as fast or faster than DES and are capable of being more secure than

DES because of their ability to use long key sizes; they can also be less secure

than DES if short key sizes are used.

RC2 is a variable-key-size symmetric block cipher and can serve as a drop-in

replacement for DES, for example in export versions of products otherwise using

DES. RC2 is approximately twice as fast as DES, at least in software. RC4 is a

variable-key-size symmetric stream cipher and is 10 to 100 times as fast as DES.

Both RC2 and RC4 are very compact in terms of code size. Their speeds are

independent of key size. To date, they have not been implemented in hardware.

A recent agreement between the Software Publishers Association (SPA) and

the U.S. government gives RC2 and RC4 special status by which the export

approval process is much simpler and quicker than the general cryptographic

export process. However, to qualify for the quick export approval a product

must limit the RC2 and RC4 key sizes to 40 bits; this maximum length may

be gradually increased over the coming years. RC2 and RC4 have been widely

used by developers who want to export their products. DES is almost never

approved for export.

RC2 and RC4 are proprietary algorithms of RSA Data Security Inc. De-

tails about them have not been published (including by patenting) in order to

maintain their special export status.

6.6 What is PEM?

PEM is the Internet Privacy-Enhanced Mail standard, designed, proposed, but

not yet o�cially adopted, by the Internet Activities Board in order to provide

secure electronic mail over the Internet. It is designed to be compatible with

current Internet email formats, although it requires new email software. PEM

includes encryption, authentication, and key management. It is an inclusive

standard, and allows use of both public-key and secret-key cryptosystems. Mul-

tiple cryptographic tools are supported; for each mail message, the speci�c hash

function, encryption algorithm, signature algorithm, and so on are speci�ed in

the header. PEM names certain cryptographic algorithms as acceptably secure;

others may be added later. PEM also supports the use of certi�cates, endorsing

the X.509 standard for certi�cate structure. If the message itself is encrypted,

DES in CBC mode is always used and the mail header gives information re-

garding the method by which the DES session key was encrypted, either RSA

or DES. Later versions of PEM will include other encryption algorithms. The

use of certi�cates and the other key management structures is optional.
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The details of PEM can be found in an article by Bishop [7] and in RFCs

(Requests for Comment) 1113 through 1115; some details have been changed

since those publications, but so far the changes exist only in unpublished draft

form. PEM is likely to be o�cially adopted by the Internet Activities Board

within six months; after that, free implementations will be made available.

6.7 What is PKCS?

PKCS (Public-Key Cryptography Standards) is a set of standards for imple-

mentation of public-key cryptography. It has been issued by RSA Data Secu-

rity Inc. in cooperation with a computer industry consortium, including Apple,

Microsoft, DEC, Lotus, Sun and MIT. PKCS has been cited by the OIW (OSI

Implementors' Workshop) as a method for implementation of OSI standards.

PKCS is compatible with PEM (see Question 6.6) but extends beyond PEM.

For example, where PEM can only handle ASCII data, PKCS is intended for

binary data as well. PKCS is also compatible with the CCITT X.509 standard

and provides implementation details about RSA encryption and authentication

that were left out of X.509.

PKCS includes both algorithms-speci�c and algorithm-independent imple-

mentation standards. Speci�c algorithms supported include RSA, DES (CBC

mode), and Di�e-Hellman key exchange. It also details algorithm-independent

syntax for digital signatures, digital envelopes (for encryption), and certi�cates;

this enables someone implementing any other cryptographic algorithms to con-

form to a standard syntax and thus preserve interoperability.

Documents detailing the PKCS standards can be obtained by anonymous

ftp to rsa.com or by email to pkcs@rsa.com.

6.8 What is RSAREF?

RSAREF is a collection of cryptographic routines in portable C source code

available at no charge from RSA Laboratories, a division of RSA Data Secu-

rity, Inc. It includes RSA, MD2, MD5, and DES. It includes both low-level

subroutines, such as RSA exponentiation, and high-level cryptographic func-

tions, such as digital signature veri�cation. The arithmetic routines can handle

multiple-precision integers, and the RSA algorithm routines can handle variable

key sizes. RSAREF is fully compatible with the PEM and PKCS standards.

RSAREF is available to citizens of the U.S. or Canada and to permanent

residents of the U.S. It can be used in personal, non-commercial applications. It

cannot be used commercially and it cannot be sent outside the U.S. or Canada.

The RSAREF license contains more details on the usage allowed and disallowed.

RSAREF is available through the Internet by sending email to rsaref@rsa.com.
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7 DSS

7.1 What is DSS?

DSS is the proposed Digital Signature Standard, which speci�es a Digital Sig-

nature Algorithm (DSA). It was selected by NIST (see Question 8.1) to be the

digital authentication standard of the U.S. government; whether the govern-

ment should in fact adopt it as the o�cial standard is still under debate. DSS

was chosen after study by NIST in cooperation with various government secu-

rity and law-enforcement agencies, most prominently the NSA (see Question

8.4). Private industry was not involved in the selection of DSS; since the selec-

tion, however, industry has been able to make public comments to NIST and

Congress regarding DSS.

DSS is based on the discrete log problem (see Question 4.9) and derives from

cryptosystems proposed by Schnorr [67] and ElGamal [25]. It is for authenti-

cation only and cannot be used for key exchange or encryption. For a detailed

description of DSS, see [54] or [53].

DSS has been looked upon unfavorably by the computer industry, which had

hoped the government would choose the RSA algorithm as the o�cial standard;

RSA is the most widely used authentication algorithm and is a de facto standard

in the private sector. Several recent articles in the press discuss the industry

dissatisfaction with DSS; an article by Messmer [48] is one example. Criticism

of DSS has focused on a few main issues: it lacks key exchange capability;

the key size of DSS, 512 bits, is not variable and/or is too small; there is a

lack of guidelines for secure implementation; the underlying cryptosystem is too

recent and has been subject to too little scrutiny to be con�dent of its strength;

the existence of two authentication standards will cause hardship to computer

hardware and software vendors, who have already standardized on RSA; and

that the process by which NIST chose DSS was too secretive and arbitrary,

with too much in
uence wielded by NSA. A more detailed discussion of these

criticisms can be found in [53], and a detailed response by NIST to the criticisms

can be found in [70].

In the DSS system, signature generation is faster than signature veri�ca-

tion; in the RSA system, signature veri�cation is much faster than signature

generation (as long as the public and private exponents are chosen to have this

property, which is the usual case). NIST claims that it is an advantage that

signing is faster, but many people in cryptography think that veri�cation should

be faster.

7.2 Is DSS secure?

DSS has been greeted with suspicion by many in industry and academia. Their

most serious criticisms involve the security of DSS.

DSS was proposed with a �xed 512-bit key size. Although probably secure
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enough for most ordinary uses, 512 bits is not secure enough for those with high

security needs, such as certifying authorities. Furthermore, in a few years 512

bits may not be secure enough for ordinary needs. What is needed is an ability

to handle variable key sizes, so that every user can choose a key size appropriate

to his needs. In response to this criticism, NIST has announced that DSS will

be revised to allow key sizes up to 1024 bits.

DSS has not been around long enough to withstand attempts to break it;

although the discrete log problem is old, the particular form of the problem used

in DSS was �rst proposed for cryptographic use in 1989 [67] and has not received

much study. This may be the most powerful argument against the security of

DSS. Any new cryptosystem could have serious 
aws that are only discovered

after a couple of years of scrutiny by cryptographers. Indeed this has happened

many times in the past; see [13] for details. RSA has withstood 15 years of

vigorous examination for weaknesses. In the absence of mathematical proofs of

security, nothing builds con�dence in a cryptosystem like sustained attempts

to crack it. Although DSS may well turn out to be a strong cryptosystem, its

relatively short history will leave doubts for years to come.

Some researchers raised alarm about the existence of \trapdoor" primes in

DSS, which could enable a key to be easily broken. These trapdoor primes are

relatively rare however, and can be avoided if each person generates his own

key. If keys are generated by a central authority, a procedure can followed by

which a DSS user can be con�dent that he was not intentionally given a weak

prime [70].

7.3 Is use of DSS covered by any patents?

Whether use of DSS infringes any existing patents is a matter of current dispute.

NIST claims that DSS is not covered by any existing patents and thus that any

private entity can use DSS without licensing or royalty fees; indeed, this was

one of the criteria used by NIST when choosing DSS. However, authors of at

least three U.S. patents claim that DSS infringes upon their work; the patents

are 4,200,770, 4,218,582, and 4,995,082. The government has �led for a patent

for DSS; the inventor is a mathematician who works for the NSA. NIST does

not plan to charge for licensing its patent.

In the debate over DSS vs. RSA, the claim by NIST that DSS can be used

without paying patent licenses or royalties has been the only clear advantage of

DSS over RSA. RSA can be used without charge by the U.S. government and is

not patented outside North America, but it must be licensed by private industry

in the U.S. If it turns out that DSS infringes previous patents after all, accep-

tance of DSS will be seriously damaged. The question of patent infringement

will eventually be settled in the courts in a few years.
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7.4 What is the current status of DSS?

After NIST issued its proposal to DSS in August 1991, there was a period in

which comments from the public were solicited. Most comments were negative.

NIST is currently in the process of reviewing and revising its proposal, in light

of the comments. A revised DSS will be released and new comments may

be solicited. Later, it may be issued as a FIPS and become the o�cial U.S.

government standard.

In March 1992, the Computer Security and Privacy Advisory Board voted

unanimously that NIST should postpone decision on DSS and sponsor a public

debate on DSS and other cryptography policy issues. The board is an o�cial

advisory body to NIST; its twelve members are drawn from both the U.S. gov-

ernment and private industry. It said that a national policy review is the only

way to resolve the con
icts between competing interests. Government security

and law-enforcement agencies want the use of cryptography to be restricted,

whereas other government agencies and private industry want cryptographic

tools to become more readily available.

A NIST o�cial standard must be used by the U.S. government agencies in

almost all cases, and thus would be used by companies doing business with the

government as well. Use by anyone outside the government is voluntary. See

Question 2.21 for a discussion of cryptography in the presence of two standards,

DSS and RSA.

8 NIST and NSA

8.1 What is NIST?

NIST is an acronym for the National Institute of Standards and Technology, a

division of the U.S. Department of Commerce; it was formerly known as the

National Bureau of Standards (NBS). Through its Computer Systems Labo-

ratory (CSL) it aims to promote open systems and interoperability that will

spur development of computer-based economic activity. It issues standards and

guidelines that it hopes will be adopted by all computer systems in the U.S.;

for example, it has issued codes for every county in the U.S. It also sponsors

workshops and seminars; it has recently sponsored meetings of the OSI Imple-

mentors' Workshop (OIW). O�cial standards are published as FIPS (Federal

Information Processing Standards) publications.

In 1987 Congress passed the Computer Security Act, which gave NIST a

mandate to de�ne standards for ensuring the security of sensitive but unclassi-

�ed information in government computer systems. It authorized NIST to work

with other government agencies and private industry in evaluating proposed

technology standards.
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8.2 What role does NIST play in cryptography?

NIST issues standards for cryptographic functions; U.S. government agencies

are required to use them, and the private sector often adopts them as well.

In January 1977, NIST declared DES (see Question 5.1) the o�cial U.S.

encryption standard and published it as FIPS Publication 46; DES soon became

a de facto standard throughout the U.S.

A few years ago, Congress asked NIST to choose a standard for digital

authentication. After a couple of years of rather secretive investigation, NIST

issued a proposed Digital Signature Standard (DSS). DSS has been extensively

criticized and is currently the subject of much debate; see Questions 7.1 and

following for a discussion. NIST has not yet chosen to issue DSS as an o�cial

standard.

Both DES and DSS were selected with the help of the NSA. NIST has

been criticized for allowing the NSA too much power in setting cryptographic

standards, since the interests of the NSA con
ict with that of the Commerce

Department and NIST. NIST has not made details of its selection process public,

so it is unclear exactly how much in
uence was exerted by the NSA, although

it is believed to be substantial, if not dominant.

8.3 What are NIST's plans for the future of cryptography?

NIST's proposed Digital Signature Standard is one part of a set of computer

security standards. The Secure Hash Standard (see Question 6.4) is another

part. In the future, NIST plans to add standards for data encryption and for

secure key exchange.

8.4 What is the NSA?

The NSA is the National Security Agency, a highly secretive agency of the U.S.

government that was created by Harry Truman in 1952; its very existence was

kept secret for many years. For a history of the NSA, see Bamford [1]. The NSA

has a mandate to listen to and decode all foreign communications of interest

to the security of the United States. It has also used its power to restrict the

public availability of cryptography, in order to prevent national enemies from

employing encryption methods too strong for the NSA to break.

As the premier cryptographic agency in government, the NSA has huge

�nancial and computer resources and employs a host of cryptographers. Devel-

opments in cryptography achieved at the NSA are not made public; this secrecy

has led to many rumors about the NSA's ability to break popular cryptosys-

tems like DES and also to rumors that the NSA has secretly placed weaknesses,

called trapdoors, in government-endorsed cryptosystems, such as DES. These

rumors have never been proved or disproved, and the criteria used by the NSA

in selecting DES and DSS have never been made public.
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Recent advances in the computer and telecommunications industries have

placed NSA actions under unprecedented scrutiny, and it has become the target

of heavy criticism for blocking development of U.S. industries that need strong

cryptographic tools. The NSA is being pressured to alter its policies, and it

may be forced to change and to remove obstacles to strong, publicly available

cryptography, even at the cost of a reduced ability to decode the communications

of national adversaries.

8.5 What role does NSA play in commercial cryptography?

The NSA's charter limits its activities to foreign intelligence. However, the

NSA is concerned with the development of commercial cryptography because

the availability of strong encryption tools through commercial channels could

hinder the NSA's mission of decoding international communications; in other

words, the NSA is worried lest strong commercial cryptography fall into the

wrong hands. For this reason, the NSA has used its power in various ways to

hinder the spread of commercial cryptography.

The NSA has stated that it has no objection to the use of secure cryptog-

raphy by U.S. industry. It also has no objection to cryptographic tools used

for authentication, as opposed to privacy. However, the NSA is widely viewed

as following policies that have the practical e�ect of limiting and/or weakening

the cryptographic tools used by law-abiding U.S. citizens and corporations; see

Barlow [2] for a discussion of NSA's e�ect on commercial cryptography.

The NSA exerts in
uence over commercial cryptography in several ways.

It controls the export of cryptography from the U.S.; see Question 1.6. It

generally does not approve products used for encryption, such as DES or RSA,

unless the key size is strictly limited. It recently agreed to allow export of

the encryption ciphers RC2 and RC4 (see Question 6.5) if the key size does

not exceed 40 bits. The NSA does approve for export any products used for

authentication only, no matter how large the key size, so long as the product

cannot be converted to use for encryption. The NSA, as well as other intelligence

and military agencies, has also blocked encryption methods from being published

or patented, citing a national security threat from publishing the method; see

Landau [41] for discussion of this practice. Additionally, the NSA serves an

\advisory" role to NIST (see Question 8.1) in the evaluation and selection of

o�cial U.S. government computer security standards; it played a prominent, and

controversial, role in the selection of DES and DSS as the encryption and digital

signatures, respectively. Recently, critics have proposed that NIST, which is part

of the Department of Commerce, become more independent of NSA.

Cryptography is in the public eye as never before and has become the subject

of national public debate. The status of cryptography, and the NSA's role in it,

will change over the next few years.
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